Skip to content

Methods

We currently implement the following methods:

Data valuation

Influence functions


  1. Castro, J., Gómez, D., Tejada, J., 2009. Polynomial calculation of the Shapley value based on sampling. Computers & Operations Research, Selected papers presented at the Tenth International Symposium on Locational Decisions (ISOLDE X) 36, 1726–1730. https://doi.org/10.1016/j.cor.2008.04.004 

  2. Ghorbani, A., Zou, J., 2019. Data Shapley: Equitable Valuation of Data for Machine Learning, in: Proceedings of the 36th International Conference on Machine Learning, PMLR. Presented at the International Conference on Machine Learning (ICML 2019), PMLR, pp. 2242–2251. 

  3. Kwon, Y., Zou, J., 2022. Beta Shapley: A Unified and Noise-reduced Data Valuation Framework for Machine Learning, in: Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022,. Presented at the AISTATS 2022, PMLR. 

  4. Schoch, S., Xu, H., Ji, Y., 2022. CS-Shapley: Class-wise Shapley Values for Data Valuation in Classification, in: Proc. Of the Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS). Presented at the Advances in Neural Information Processing Systems (NeurIPS 2022). 

  5. Yan, T., Procaccia, A.D., 2021. If You Like Shapley Then You’ll Love the Core, in: Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021. Presented at the AAAI Conference on Artificial Intelligence, Association for the Advancement of Artificial Intelligence, pp. 5751–5759. https://doi.org/10.1609/aaai.v35i6.16721 

  6. Okhrati, R., Lipani, A., 2021. A Multilinear Sampling Algorithm to Estimate Shapley Values, in: 2020 25th International Conference on Pattern Recognition (ICPR). Presented at the 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp. 7992–7999. https://doi.org/10.1109/ICPR48806.2021.9412511 

  7. Wang, T., Yang, Y., Jia, R., 2022. Improving Cooperative Game Theory-based Data Valuation via Data Utility Learning. Presented at the International Conference on Learning Representations (ICLR 2022). Workshop on Socially Responsible Machine Learning, arXiv. https://doi.org/10.48550/arXiv.2107.06336 

  8. Jia, R., Dao, D., Wang, B., Hubis, F.A., Gurel, N.M., Li, B., Zhang, C., Spanos, C., Song, D., 2019. Efficient task-specific data valuation for nearest neighbor algorithms. Proc. VLDB Endow. 12, 1610–1623. https://doi.org/10.14778/3342263.3342637 

  9. Jia, R., Dao, D., Wang, B., Hubis, F.A., Hynes, N., Gürel, N.M., Li, B., Zhang, C., Song, D., Spanos, C.J., 2019. Towards Efficient Data Valuation Based on the Shapley Value, in: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics. Presented at the International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, pp. 1167–1176. 

  10. Kwon, Y., Zou, J., 2023. Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value, in: Proceedings of the 40th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR, pp. 18135–18152. 

  11. Koh, P.W., Liang, P., 2017. Understanding Black-box Predictions via Influence Functions, in: Proceedings of the 34th International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR, pp. 1885–1894. 

  12. Agarwal, N., Bullins, B., Hazan, E., 2017. Second-Order Stochastic Optimization for Machine Learning in Linear Time. JMLR 18, 1–40. 

  13. Schioppa, A., Zablotskaia, P., Vilar, D., Sokolov, A., 2022. Scaling Up Influence Functions. Proc. AAAI Conf. Artif. Intell. 36, 8179–8186. https://doi.org/10.1609/aaai.v36i8.20791 

  14. George, T., Laurent, C., Bouthillier, X., Ballas, N., Vincent, P., 2018. Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis, in: Advances in Neural Information Processing Systems. Curran Associates, Inc. 

  15. Martens, J., Grosse, R., 2015. Optimizing Neural Networks with Kronecker-factored Approximate Curvature, in: Proceedings of the 32nd International Conference on Machine Learning. Presented at the International Conference on Machine Learning, PMLR, pp. 2408–2417. 

  16. Hataya, R., Yamada, M., 2023. Nyström Method for Accurate and Scalable Implicit Differentiation, in: Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. Presented at the International Conference on Artificial Intelligence and Statistics, PMLR, pp. 4643–4654. 

  17. Kwon, Y., Wu, E., Wu, K., Zou, J., 2023. DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models. Presented at the The Twelfth International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2310.00902