Skip to content

pydvl.value.shapley.knn

This module contains Shapley computations for K-Nearest Neighbours.

Todo

Implement approximate KNN computation for sublinear complexity

References


  1. Jia, R. et al., 2019. Efficient Task-Specific Data Valuation for Nearest Neighbor Algorithms. In: Proceedings of the VLDB Endowment, Vol. 12, No. 11, pp. 1610–1623. 

knn_shapley

knn_shapley(u: Utility, *, progress: bool = True) -> ValuationResult

Computes exact Shapley values for a KNN classifier.

This implements the method described in (Jia, R. et al., 2019)1. It exploits the local structure of K-Nearest Neighbours to reduce the number of calls to the utility function to a constant number per index, thus reducing computation time to \(O(n)\).

PARAMETER DESCRIPTION
u

Utility with a KNN model to extract parameters from. The object will not be modified nor used other than to call get_params()

TYPE: Utility

progress

Whether to display a progress bar.

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
ValuationResult

Object with the data values.

RAISES DESCRIPTION
TypeError

If the model in the utility is not a sklearn.neighbors.KNeighborsClassifier.

New in version 0.1.0

Source code in src/pydvl/value/shapley/knn.py
def knn_shapley(u: Utility, *, progress: bool = True) -> ValuationResult:
    """Computes exact Shapley values for a KNN classifier.

    This implements the method described in (Jia, R. et al., 2019)<sup><a href="#jia_efficient_2019a">1</a></sup>.
    It exploits the local structure of K-Nearest Neighbours to reduce the number
    of calls to the utility function to a constant number per index, thus
    reducing computation time to $O(n)$.

    Args:
        u: Utility with a KNN model to extract parameters from. The object
            will not be modified nor used other than to call [get_params()](
            <https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator.get_params>)
        progress: Whether to display a progress bar.

    Returns:
        Object with the data values.

    Raises:
        TypeError: If the model in the utility is not a
            [sklearn.neighbors.KNeighborsClassifier][].

    !!! tip "New in version 0.1.0"

    """
    if not isinstance(u.model, KNeighborsClassifier):
        raise TypeError("KNN Shapley requires a K-Nearest Neighbours model")

    defaults: Dict[str, Union[int, str]] = {
        "algorithm": "ball_tree" if u.data.dim >= 20 else "kd_tree",
        "metric": "minkowski",
        "p": 2,
    }
    defaults.update(u.model.get_params())
    # HACK: NearestNeighbors doesn't support this. There will be more...
    del defaults["weights"]
    n_neighbors: int = int(defaults["n_neighbors"])
    defaults["n_neighbors"] = len(u.data)  # We want all training points sorted

    assert n_neighbors < len(u.data)
    # assert data.target_dim == 1

    nns = NearestNeighbors(**defaults).fit(u.data.x_train)
    # closest to farthest
    _, indices = nns.kneighbors(u.data.x_test)

    values: NDArray[np.float64] = np.zeros_like(u.data.indices, dtype=np.float64)
    n = len(u.data)
    yt = u.data.y_train
    iterator = enumerate(zip(u.data.y_test, indices), start=1)
    for j, (y, ii) in tqdm(iterator, disable=not progress):
        value_at_x = int(yt[ii[-1]] == y) / n
        values[ii[-1]] += (value_at_x - values[ii[-1]]) / j
        for i in range(n - 2, n_neighbors, -1):  # farthest to closest
            value_at_x = (
                values[ii[i + 1]] + (int(yt[ii[i]] == y) - int(yt[ii[i + 1]] == y)) / i
            )
            values[ii[i]] += (value_at_x - values[ii[i]]) / j
        for i in range(n_neighbors, -1, -1):  # farthest to closest
            value_at_x = (
                values[ii[i + 1]]
                + (int(yt[ii[i]] == y) - int(yt[ii[i + 1]] == y)) / n_neighbors
            )
            values[ii[i]] += (value_at_x - values[ii[i]]) / j

    return ValuationResult(
        algorithm="knn_shapley",
        status=Status.Converged,
        values=values,
        data_names=u.data.data_names,
    )