Common
lc_solve_problem(problem, *, u, algorithm, non_negative_subsidy=False, solver_options=None)
¶
Solves a linear problem as prepared by mclc_prepare_problem(). Useful for parallel execution of multiple experiments by running this as a remote task.
See exact_least_core() or montecarlo_least_core() for argument descriptions.
Source code in src/pydvl/value/least_core/common.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
lc_solve_problems(problems, u, algorithm, config=ParallelConfig(), n_jobs=1, non_negative_subsidy=True, solver_options=None, **options)
¶
Solves a list of linear problems in parallel.
PARAMETER | DESCRIPTION |
---|---|
u |
Utility.
TYPE:
|
problems |
Least Core problems to solve, as returned by mclc_prepare_problem().
TYPE:
|
algorithm |
Name of the valuation algorithm.
TYPE:
|
config |
Object configuring parallel computation, with cluster address, number of cpus, etc.
TYPE:
|
n_jobs |
Number of parallel jobs to run.
TYPE:
|
non_negative_subsidy |
If True, the least core subsidy \(e\) is constrained to be non-negative.
TYPE:
|
solver_options |
Additional options to pass to the solver. |
RETURNS | DESCRIPTION |
---|---|
List[ValuationResult]
|
List of solutions. |