Semivalues
This module provides the core functionality for the computation of generic semi-values. A semi-value is any valuation function with the form:
where the coefficients \(w(k)\) satisfy the property:
Note
For implementation consistency, we slightly depart from the common definition of semi-values, which includes a factor \(1/n\) in the sum over subsets. Instead, we subsume this factor into the coefficient \(w(k)\).
As such, the computation of a semi-value requires two components:
- A subset sampler that generates subsets of the set \(D\) of interest.
- A coefficient \(w(k)\) that assigns a weight to each subset size \(k\).
Samplers can be found in sampler, and can be classified into two categories: powerset samplers and permutation samplers. Powerset samplers generate subsets of \(D_{-i}\), while the permutation sampler generates permutations of \(D\). The former conform to the above definition of semi-values, while the latter reformulates it as:
where \(\sigma_{:i}\) denotes the set of indices in permutation sigma before the position where \(i\) appears (see Data valuation for details), and
is the weight correction due to the reformulation.
Warning
Both PermutationSampler and DeterministicPermutationSampler require caching to be enabled or computation will be doubled wrt. a 'direct' implementation of permutation MC.
There are several pre-defined coefficients, including the Shapley value of (Ghorbani and Zou, 2019)1, the Banzhaf index of (Wang and Jia)3, and the Beta coefficient of (Kwon and Zou, 2022)2. For each of these methods, there is a convenience wrapper function. Respectively, these are: compute_shapley_semivalues, compute_banzhaf_semivalues, and compute_beta_shapley_semivalues. instead.
References¶
-
Ghorbani, A., Zou, J., 2019. Data Shapley: Equitable Valuation of Data for Machine Learning. In: Proceedings of the 36th International Conference on Machine Learning, PMLR, pp. 2242–2251. ↩
-
Kwon, Y. and Zou, J., 2022. Beta Shapley: A Unified and Noise-reduced Data Valuation Framework for Machine Learning. In: Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS) 2022, Vol. 151. PMLR, Valencia, Spain. ↩
-
Wang, J.T. and Jia, R., 2022. Data Banzhaf: A Robust Data Valuation Framework for Machine Learning. ArXiv preprint arXiv:2205.15466. ↩
SVCoefficient
¶
SemiValueMode
¶
compute_generic_semivalues(sampler, u, coefficient, done, *, n_jobs=1, config=ParallelConfig(), progress=False)
¶
Computes semi-values for a given utility function and subset sampler.
PARAMETER | DESCRIPTION |
---|---|
sampler |
The subset sampler to use for utility computations.
TYPE:
|
u |
Utility object with model, data, and scoring function.
TYPE:
|
coefficient |
The semi-value coefficient
TYPE:
|
done |
Stopping criterion.
TYPE:
|
n_jobs |
Number of parallel jobs to use.
TYPE:
|
config |
Object configuring parallel computation, with cluster address, number of cpus, etc.
TYPE:
|
progress |
Whether to display a progress bar.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ValuationResult
|
Object with the results. |
Source code in src/pydvl/value/semivalues.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
compute_shapley_semivalues(u, *, done=MaxUpdates(100), sampler_t=PermutationSampler, n_jobs=1, config=ParallelConfig(), progress=False, seed=None)
¶
Computes Shapley values for a given utility function.
This is a convenience wrapper for compute_generic_semivalues with the Shapley coefficient. Use compute_shapley_values for a more flexible interface and additional methods, including TMCS.
PARAMETER | DESCRIPTION |
---|---|
u |
Utility object with model, data, and scoring function.
TYPE:
|
done |
Stopping criterion.
TYPE:
|
sampler_t |
The sampler type to use. See :mod:
TYPE:
|
n_jobs |
Number of parallel jobs to use.
TYPE:
|
config |
Object configuring parallel computation, with cluster address, number of cpus, etc.
TYPE:
|
seed |
Either an instance of a numpy random number generator or a seed for it.
TYPE:
|
progress |
Whether to display a progress bar.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ValuationResult
|
Object with the results. |
Source code in src/pydvl/value/semivalues.py
compute_banzhaf_semivalues(u, *, done=MaxUpdates(100), sampler_t=PermutationSampler, n_jobs=1, config=ParallelConfig(), progress=False, seed=None)
¶
Computes Banzhaf values for a given utility function.
This is a convenience wrapper for compute_generic_semivalues with the Banzhaf coefficient.
PARAMETER | DESCRIPTION |
---|---|
u |
Utility object with model, data, and scoring function.
TYPE:
|
done |
Stopping criterion.
TYPE:
|
sampler_t |
The sampler type to use. See :mod:
TYPE:
|
n_jobs |
Number of parallel jobs to use.
TYPE:
|
seed |
Either an instance of a numpy random number generator or a seed for it.
TYPE:
|
config |
Object configuring parallel computation, with cluster address, number of cpus, etc.
TYPE:
|
progress |
Whether to display a progress bar.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ValuationResult
|
Object with the results. |
Source code in src/pydvl/value/semivalues.py
compute_beta_shapley_semivalues(u, *, alpha=1, beta=1, done=MaxUpdates(100), sampler_t=PermutationSampler, n_jobs=1, config=ParallelConfig(), progress=False, seed=None)
¶
Computes Beta Shapley values for a given utility function.
This is a convenience wrapper for compute_generic_semivalues with the Beta Shapley coefficient.
PARAMETER | DESCRIPTION |
---|---|
u |
Utility object with model, data, and scoring function.
TYPE:
|
alpha |
Alpha parameter of the Beta distribution.
TYPE:
|
beta |
Beta parameter of the Beta distribution.
TYPE:
|
done |
Stopping criterion.
TYPE:
|
sampler_t |
The sampler type to use. See :mod:
TYPE:
|
n_jobs |
Number of parallel jobs to use.
TYPE:
|
seed |
Either an instance of a numpy random number generator or a seed for it.
TYPE:
|
config |
Object configuring parallel computation, with cluster address, number of cpus, etc.
TYPE:
|
progress |
Whether to display a progress bar.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ValuationResult
|
Object with the results. |
Source code in src/pydvl/value/semivalues.py
compute_semivalues(u, *, done=MaxUpdates(100), mode=SemiValueMode.Shapley, sampler_t=PermutationSampler, n_jobs=1, seed=None, **kwargs)
¶
Convenience entry point for most common semi-value computations.
Deprecation warning
This method is deprecated and will be replaced in 0.8.0 by the more general implementation of compute_generic_semivalues. Use compute_shapley_semivalues, compute_banzhaf_semivalues, or compute_beta_shapley_semivalues instead.
The modes supported with this interface are the following. For greater flexibility use compute_generic_semivalues directly.
- SemiValueMode.Shapley: Shapley values.
- [SemiValueMode.BetaShapley][pydvl.value.semivalues.SemiValueMode.BetaShapley]:
Implements the Beta Shapley semi-value as introduced in
(Kwon and Zou, 2022)1.
Pass additional keyword arguments
alpha
andbeta
to set the parameters of the Beta distribution (both default to 1). - [SemiValueMode.Banzhaf][]: Implements the Banzhaf semi-value as introduced in (Wang and Jia, 2022)1.
See [[data-valuation]] for an overview of valuation. - SemiValueMode.Banzhaf: Implements the Banzhaf semi-value as introduced in [@wang_data_2022].
PARAMETER | DESCRIPTION |
---|---|
u |
Utility object with model, data, and scoring function.
TYPE:
|
done |
Stopping criterion.
TYPE:
|
mode |
The semi-value mode to use. See SemiValueMode for a list.
TYPE:
|
sampler_t |
The sampler type to use. See sampler for a list.
TYPE:
|
n_jobs |
Number of parallel jobs to use.
TYPE:
|
seed |
Either an instance of a numpy random number generator or a seed for it.
TYPE:
|
kwargs |
Additional keyword arguments passed to compute_generic_semivalues.
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
ValuationResult
|
Object with the results. |
Source code in src/pydvl/value/semivalues.py
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
|
Created: 2023-09-02